Warning: error_log(/data/www/wwwroot/hmttv.cn/caches/error_log.php): failed to open stream: Permission denied in /data/www/wwwroot/hmttv.cn/phpcms/libs/functions/global.func.php on line 537 Warning: error_log(/data/www/wwwroot/hmttv.cn/caches/error_log.php): failed to open stream: Permission denied in /data/www/wwwroot/hmttv.cn/phpcms/libs/functions/global.func.php on line 537 国产精品免费看久久久,波多野结衣电影一区,99视频在线精品自拍

          整合營銷服務商

          電腦端+手機端+微信端=數據同步管理

          免費咨詢熱線:

          寫個網頁更簡單了!讓AI根據手繪原型生成HTML - 教程+代碼

          小新 編譯自 Insight Data Blog

          量子位 出品 | 公眾號 QbitAI

          寫個網頁能有多麻煩?在大多數公司里,這項工作分為三步:

          1. 產品經理完成用戶調研任務后,列出一系列技術要求;

          2. 設計師根據這些要求來設計低保真原型,逐漸修改得到高保真原型和UI設計圖;

          3. 工程師將這些設計圖實現為代碼,最終變成用戶使用的產品。

          這么多環節,任何地方出一點問題,都會拉長開發周期。因此,不少公司,比如Airbnb已經開始用機器學習來提高這個過程的效率。

          Airbnb內部的AI工具,從圖紙到代碼一步到位

          看起來很美好,但Airbnb還沒公開該模型中端到端訓練的細節,以及手工設計的圖像特征對該模型的貢獻度。這是該公司特有的閉源解決方案專利,可能不會進行公開。

          好在,一個叫Ashwin Kumar的程序員創建了一個開源版本,讓開發者/設計師的工作變得更簡單。

          以下內容翻譯自他的博客:

          理想上,這個模型可以根據網站設計的簡單手繪原型,很快地生成一個可用的HTML網站:

          SketchCode模型利用手繪線框圖來生成HTML網站

          事實上,上面例子就是利用訓練好的模型在測試集上生成的一個實際網站,代碼請訪問:https://github.com/ashnkumar/sketch-code。

          從圖像標注中獲取靈感

          目前要解決的問題屬于一種更廣泛的任務,叫做程序綜合(program synthesis),即自動生成工作源代碼。盡管很多程序綜合研究通過自然語言規范或執行追蹤法來生成代碼,但在當前任務中,我會充分利用源圖像,即給出的手繪線框圖來展開工作。

          在機器學習中有一個十分熱門的研究領域,稱為圖像標注(image caption),目的是構建一種把圖像和文本連接在一起的模型,特別是用于生成源圖像內容的描述。

          圖像標注模型生成源圖像的文本描述

          我從一篇pix2code論文和另一個應用這種方法的相關項目中獲得靈感,決定把我的任務按照圖像標注方式來實現,把繪制的網站線框圖作為輸入圖像,并將其相應的HTML代碼作為其輸出內容。

          注:上段提到的兩個參考項目分別是

          pix2code論文:https://arxiv.org/abs/1705.07962

          floydhub教程:https://blog.floydhub.com/turning-design-mockups-into-code-with-deep-learning/?source=techstories.org

          獲取合適的數據集

          確定圖像標注方法后,理想中使用的訓練數據集會包含成千上萬對手繪線框圖和對應的HTML輸出代碼。但是,目前還沒有我想要的相關數據集,我只好為這個任務來創建數據集。

          最開始,我嘗試了pix2code論文給出的開源數據集,該數據集由1750張綜合生成網站的截圖及其相應源代碼組成。

          pix2code數據集中的生成網站圖片和源代碼

          這是一個很好的數據集,有幾個有趣的地方:

          • 該數據集中的每個生成網站都包含幾個簡單的輔助程序元素,如按鈕、文本框和DIV對象。盡管這意味著這個模型受限于將這些少數元素作為它的輸出內容,但是這些元素可通過選擇生成網絡來修改和擴展。這種方法應該很容易地推廣到更大的元素詞匯表。

          • 每個樣本的源代碼都是由領域專用語言(DSL)的令牌組成,這是該論文作者為該任務所創建的。每個令牌對應于HTML和CSS的一個片段,且加入編譯器把DSL轉換為運行的HTML代碼。

          彩色網站圖像變手繪圖

          為了修改我的任務數據集,我要讓網站圖像看起來像手工繪制出的。我嘗試使用Python中的OpenCV庫和PIL庫等工具對每張圖像進行修改,包括灰度轉換和輪廓檢測。

          最終,我決定直接修改原始網站的CSS樣式表,通過執行以下操作:

          1. 更改頁面上元素的邊框半徑來平滑按鈕和DIV對象的邊緣;

          2. 模仿繪制的草圖來調整邊框的粗細,并添加陰影;

          3. 將原有字體更改為類似手寫的字體;

          最終實現的流程中還增加了一個步驟,通過添加傾斜、移動和旋轉來實現圖像增強,來模擬實際繪制草圖中的變化。

          使用圖像標注模型架構

          現在,我已經處理好數據集,接下來是構建模型。

          我利用了圖像標注中使用的模型架構,該架構由三個主要部分組成:

          1. 一種使用卷積神經網絡(CNN)的計算機視覺模型,從源圖像提取圖像特征;

          2. 一種包含門控單元GRU的語言模型,對源代碼令牌序列進行編碼;

          3. 一個解碼器模型,也屬于GRU單元,把前兩個步驟的輸出作為輸入,并預測序列中的下一個令牌。

          以令牌序列為輸入來訓練模型

          為了訓練模型,我將源代碼拆分為令牌序列。模型的輸入為單個部分序列及它的源圖像,其標簽是文本中的下一個令牌。該模型使用交叉熵函數作為損失函數,將模型的下個預測令牌與實際的下個令牌進行比較。

          在模型從頭開始生成代碼的過程中,該推理方式稍有不同。圖像仍然通過CNN網絡進行處理,但文本處理開始時僅采用一個啟動序列。在每個步驟中,模型對序列中輸出的下個預測令牌將會添加到當前輸入序列,并作為新的輸入序列送到模型中;重復此操作直到模型的預測令牌為,或該過程達到每個文本中令牌數目的預定義值。

          當模型生成一組預測令牌后,編譯器就會將DSL令牌轉換為HTML代碼,這些HTML代碼可以在任何瀏覽器中運行。

          用BLEU分數評估模型

          我決定使用BLEU分數來評估模型。這是機器翻譯任務中常用的一種度量標準,通過在給定相同輸入的情況下,衡量機器生成的文本與人類可能產生內容的近似程度。

          實際上,BLEU通過比較生成文本和參考文本的N元序列,以創建修改后的準確版本。它非常適用于這個項目,因為它會影響生成HTML代碼中的實際元素,以及它們之間的相互關系。

          最棒的是,我還可以通過檢查生成的網站來比較當前的實際BLEU分數。

          觀察BLEU分數

          當BLEU分數為1.0時,則說明給定源圖像后該模型能在正確位置設置合適的元素,而較低的BLEU分數這說明模型預測了錯誤元素或是把它們放在相對不合適的位置。我們最終模型在評估數據集上的BLEU分數為0.76。

          福利:定制網頁風格

          后來,我還想到,由于該模型只生成當前頁面的框架,即文本的令牌,因此我可以在編譯過程中添加一個定制的CSS層,并立刻得到不同風格的生成網站。

          一個手繪圖生成多種風格的網頁

          把風格定制和模型生成兩個過程分開,在使用模型時帶來了很多好處:

          1.如果想要將SketchCode模型應用到自己公司的產品中,前端工程師可以直接使用該模型,只需更改一個CSS文件來匹配該公司的網頁設計風格;

          2. 該模型內置的可擴展性,即通過單一源圖像,模型可以迅速編譯出多種不同的預定義風格,因此用戶可以設想出多種可能的網站風格,并在瀏覽器中瀏覽這些生成網頁。

          總結和展望

          受到圖像標注研究的啟發,SketchCode模型能夠在幾秒鐘內將手繪網站線框圖轉換為可用的HTML網站。

          但是,該模型還存在一些問題,這也是我接下來可能的工作方向:

          1. 由于這個模型只使用了16個元素進行訓練,所以它不能預測這些數據以外的令牌。下一步方向可能是使用更多元素來生成更多的網站樣本,包括網站圖片,下拉菜單和窗體,可參考啟動程序組件(https://getbootstrap.com/docs/4.0/components/buttons/)來獲得思路;

          2. 在實際網站構建中,存在很多變化。創建一個能更好反映這種變化的訓練集,是提高生成效果的一種好方法,可以通過獲取更多網站的HTML/CSS代碼以及內容截圖來提高;

          3. 手繪圖紙也存在很多CSS修改技巧無法捕捉到的變化。解決這個問題的一種好方法是使用生成對抗網絡GAN來創建更逼真的繪制網站圖像。

          相關地址

          代碼:https://github.com/ashnkumar/sketch-code

          原文:https://blog.insightdatascience.com/automated-front-end-development-using-deep-learning-3169dd086e82

          — 完 —

          誠摯招聘

          量子位正在招募編輯/記者,工作地點在北京中關村。期待有才氣、有熱情的同學加入我們!相關細節,請在量子位公眾號(QbitAI)對話界面,回復“招聘”兩個字。

          量子位 QbitAI · 頭條號簽約作者

          ?'?' ? 追蹤AI技術和產品新動態

          們都知道互聯網的發展,是因為網站的存在。

          一個個網站連接成了互聯網,比如我們購物買東西,使用搜索引擎搜東西,用社交網站來聊天,它們給我們生活帶來了極大的樂趣。

          你有沒有曾經想要擁有一個自己的網站?

          所以今天教大家來自己創建一個自己的網站,你可以隨意添加按鈕,數據,還可以自己動手設計。

          而這些都是免費的,僅僅需要花費幾分鐘時間就可以完成。

          有沒有很心動,跟著我一起來吧!

          在教大家之前,我先給大家介紹一下可以創建網站的這些網站,分析它們的特點,它們使用都大同小異,然后你們可以自己來選擇。

          Wix

          Wix 是一個網頁開發平臺,你可以拖拽就可以創建HTML 5 工具網站,你可以免費創建,但是額外的功能需要付費了。

          它也是老牌的免費創建網站的網站,它的模板豐富,樣式齊全,有專業的設計師設計模板。

          180 個國家的900 萬用戶使用他們的服務,也看出他們的出色。

          你只需要注冊登錄,選擇模板,自定義發布文本,圖片等等,然后發布你的網站,所有人都可以訪問你的網站。

          由于是國外的網站,不太穩定。

          Weebly

          Weebly 也是類似Wix 的通過拖拽可以創建網站。

          它的網站本身就是高顏值,它的模板也是一樣的很精美的。

          而且它幾乎幫你完成了一切,比如默認的各種樣式,文本,圖片,表單等等。

          它還內置了很多高清圖片庫,還有豐富的模板和樣式,讓你隨意挑選。

          它也一樣有很多外置的服務,但是一樣需要付費的。

          而且它的空間還是無限的,你可以隨意上傳自己想要的東西。

          總感覺崇洋媚外不太好,所以下面也推薦幾個國內做的很不錯的,而且訪問速度很快,你分享給其他人,也不會尷尬的打不開。

          竹子建站

          竹子建站算是比較符合國人風格的建站網站。

          打開網站,琳瑯滿目的模板,你只需挑選一個自己喜歡的模板,比如像個人網站,婚紗網站,甚至是自己的簡歷也是可以的,你可以提前預覽,或者直接來修改。

          打開編輯頁面,頁面的任何一個按鈕圖片,你只需要選中,就會顯示修改工具欄。

          你可以修改字體類型大小,顏色,高度,居中等等。

          你還可以插入圖片,網址,表格等。

          你還可以隨意拖拽控件的位置,或者隨時插入刪除。

          修改圖片時,還有內置的高清圖庫,還有各種Icon 可以選擇。

          同時它還支持不同的格式,比如像視頻,文檔,PDF,PPT 等。

          而且還能做到隨見即所得,真的很方便,編輯好即可發布。

          同時它還適配了手機,電腦,平板,讓你在不同的設備上體驗都是非常的棒的。

          Strikingly

          Strikingly 是面向海外的便捷建站網站,當然它出自國內的團隊之手。

          和Strikingly 一樣的服務,而且速度更快,它還有各種強大的功能。

          它也是選中就可以隨時編輯。

          而且你還可以選擇網站類型,網站描述,添加關鍵詞。

          同時它還有數據分析功能。

          更多強大的功能需要專業付費版了。

          而且它的網頁就沒有那么美觀了。

          對于個人用戶不太友好。


          主站蜘蛛池模板: 色偷偷一区二区无码视频| 国产精品xxxx国产喷水亚洲国产精品无码久久一区 | 亚洲日韩一区精品射精| 成人精品一区二区不卡视频| 亚洲乱色熟女一区二区三区丝袜 | 动漫精品专区一区二区三区不卡| 中文字幕视频一区| 国产探花在线精品一区二区| 影院无码人妻精品一区二区| 精品久久久中文字幕一区| 91精品乱码一区二区三区| 亚洲av午夜福利精品一区人妖| 成人国产一区二区三区| 一区二区福利视频| 精品人妻一区二区三区四区在线 | 无码精品黑人一区二区三区| 国产一区二区三区在线观看精品 | 亚洲一区二区三区写真| 精品无码av一区二区三区 | 国产精品香蕉在线一区| 久久毛片一区二区| 成人欧美一区二区三区在线视频 | 美女免费视频一区二区三区| 日韩视频一区二区| 国产一区二区三区美女| 无码日韩人妻AV一区二区三区 | 国产福利一区二区三区视频在线| 另类免费视频一区二区在线观看| 无码国产精品一区二区免费式芒果 | 国产精品一区二区综合| 内射少妇一区27P| 精品福利一区二区三区精品国产第一国产综合精品 | 久久精品一区二区三区不卡| 亚洲国产成人一区二区三区| 亚洲欧洲一区二区| 亚洲AV无码国产一区二区三区 | 午夜视频在线观看一区二区| 立川理惠在线播放一区| 国产伦精品一区二区三区视频猫咪| 国产日韩一区二区三免费高清| 亚洲第一区香蕉_国产a|